Abstract
AbstractUltrathin lensless fibre endoscopes offer minimally invasive investigation, but they mostly operate as a rigid type due to the need for prior calibration of a fibre probe. Furthermore, most implementations work in fluorescence mode rather than label-free imaging mode, making them unsuitable for general medical diagnosis. Herein, we report a fully flexible ultrathin fibre endoscope taking 3D holographic images of unstained tissues with 0.85-μm spatial resolution. Using a bare fibre bundle as thin as 200-μm diameter, we design a lensless Fourier holographic imaging configuration to selectively detect weak reflections from biological tissues, a critical step for label-free endoscopic reflectance imaging. A unique algorithm is developed for calibration-free holographic image reconstruction, allowing us to image through a narrow and curved passage regardless of fibre bending. We demonstrate endoscopic reflectance imaging of unstained rat intestine tissues that are completely invisible to conventional endoscopes. The proposed endoscope will expedite a more accurate and earlier diagnosis than before with minimal complications.
Funder
Institute for Basic Science
National Research Foundation of Korea
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献