Abstract
AbstractStrong light-matter interaction leads to the formation of hybrid polariton states and alters the photophysical dynamics of organic materials and biological systems without modifying their chemical structure. Here, we experimentally investigated a well-known photosynthetic protein, light harvesting 2 complexes (LH2) from purple bacteria under strong coupling with the light mode of a Fabry-Perot optical microcavity. Using femtosecond pump probe spectroscopy, we analyzed the polariton dynamics of the strongly coupled system and observed a significant prolongation of the excited state lifetime compared with the bare exciton, which can be explained in terms of the exciton reservoir model. Our findings indicate the potential of tuning the dynamic of the whole photosynthetic unit, which contains several light harvesting complexes and reaction centers, with the help of strong exciton-photon coupling, and opening the discussion about possible design strategies of artificial photosynthetic devices.
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary
Reference47 articles.
1. Garcia-Vidal, F. J., Ciuti, C. & Ebbesen, T. W. Manipulating matter by strong coupling to vacuum fields. Science 373, eabd0336 (2021).
2. Hertzog, M., Wang, M., Mony, J. & Börjesson, K. Strong light-matter interactions: a new direction within chemistry. Chem. Soc. Rev. 48, 937–961 (2019).
3. Yu, X. et al. Strong coupling in microcavity structures: principle, design, and practical application. Laser Photonics Rev. 13, 1–19 (2018).
4. Dovzhenko, D. S., Ryabchuk, S. V., Rakovich, Y. P. & Nabiev, I. R. Light-matter interaction in the strong coupling regime: configurations, conditions, and applications. Nanoscale 10, 3589–3605 (2018).
5. Ribeiro, R. F., Martínez-Martínez, L. A., Du, M., Campos-Gonzalez-Angulo, J. & Yuen-Zhou, J. Polariton chemistry: controlling molecular dynamics with optical cavities. Chem. Sci. 9, 6325–6339 (2018).
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献