Abstract
AbstractQuantum Hall interferometers have been used to probe fractional charge and statistics of quasiparticles. We present measurements of a small Fabry–Perot interferometer in which the electrostatic coupling constants which affect interferometer behavior can be determined experimentally. Near the center of the ν = 1/3 state this device exhibits Aharonov–Bohm interference interrupted by a few discrete phase jumps, and Φ0 oscillations at higher and lower magnetic fields, consistent with theoretical predictions for detection of anyonic statistics. We estimate the electrostatic parameters KI and KIL by two methods: using the ratio of oscillation periods in compressible versus incompressible regions, and from finite-bias conductance measurements. We find that the extracted KI and KIL can account for the deviation of the phase jumps from the theoretical anyonic phase θa = 2π/3. At integer states, we find that KI and KIL can account for the Aharonov–Bohm and Coulomb-dominated behavior of different edge states.
Funder
U.S. Department of Energy
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献