Abstract
AbstractThe Miocene Climatic Optimum (MCO, 14–17 Ma) was ~3–4 °C warmer than present, similar to estimates for 2100. Coincident with the MCO is the Monterey positive carbon isotope (δ13C) excursion, with oceans more depleted in 12C relative to 13C than any time in the past 50 Myrs. The long-standing Monterey Hypothesis uses this excursion to invoke massive marine organic carbon burial and draw-down of atmospheric CO2 as a cause for the subsequent Miocene Climate Transition and Antarctic glaciation. However, this hypothesis cannot explain the multi-Myr lag between the δ13C excursion and global cooling. We use planktic foraminiferal B/Ca, δ11B, δ13C, and Mg/Ca to reconstruct surface ocean carbonate chemistry and temperature. We propose that the MCO was associated with elevated oceanic dissolved inorganic carbon caused by volcanic degassing, global warming, and sea-level rise. A key negative feedback of this warm climate was the organic carbon burial on drowned continental shelves.
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry
Cited by
72 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献