Understanding soil selenium accumulation and bioavailability through size resolved and elemental characterization of soil extracts

Author:

Tolu JulieORCID,Bouchet Sylvain,Helfenstein Julian,Hausheer Olivia,Chékifi Sarah,Frossard Emmanuel,Tamburini Federica,Chadwick Oliver A.,Winkel Lenny H. E.ORCID

Abstract

AbstractDietary deficiency of selenium is a global health threat related to low selenium concentrations in crops. Despite the chemical similarity of selenium to the two more abundantly studied elements sulfur and arsenic, the understanding of its accumulation in soils and availability for plants is limited. The lack of understanding of soil selenium cycling is largely due to the unavailability of methods to characterize selenium species in soils, especially the organic ones. Here we develop a size-resolved multi-elemental method using liquid chromatography and elemental mass spectrometry, which enables an advanced characterization of selenium, sulfur, and arsenic species in soil extracts. We apply the analytical approach to soils sampled along the Kohala rainfall gradient on Big Island (Hawaii), which cover a large range of organic carbon and (oxy)hydroxides contents. Similarly to sulfur but contrarily to arsenic, a large fraction of selenium is found associated with organic matter in these soils. However, while sulfur and arsenic are predominantly found as oxyanions in water extracts, selenium mainly exists as small hydrophilic organic compounds. Combining Kohala soil speciation data with concentrations in parent rock and plants further suggests that selenium association with organic matter limits its mobility in soils and availability for plants.

Funder

GambleAware

Eawag

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3