Manipulating disordered plasmonic systems by external cavity with transition from broadband absorption to reconfigurable reflection

Author:

Mao Peng,Liu Changxu,Song Fengqi,Han MinORCID,Maier Stefan A.,Zhang ShuangORCID

Abstract

AbstractDisordered biostructures are ubiquitous in nature, usually generating white or black colours due to their broadband optical response and robustness to perturbations. Through judicious design, disordered nanostructures have been realised in artificial systems, with unique properties for light localisation, photon transportation and energy harvesting. On the other hand, the tunability of disordered systems with a broadband response has been scarcely explored. Here, we achieve the controlled manipulation of disordered plasmonic systems, realising the transition from broadband absorption to tunable reflection through deterministic control of the coupling to an external cavity. Starting from a generalised model, we realise disordered systems composed of plasmonic nanoclusters that either operate as a broadband absorber or with a reconfigurable reflection band throughout the visible. Not limited to its significance for the further understanding of the physics of disorder, our disordered plasmonic system provides a novel platform for various practical application such as structural colour patterning.

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3