Previous infection with seasonal coronaviruses does not protect male Syrian hamsters from challenge with SARS-CoV-2

Author:

Francis Magen E.ORCID,Jansen Ethan B.ORCID,Yourkowski AnthonyORCID,Selim Alaa,Swan Cynthia L.,MacPhee Brian K.,Thivierge Brittany,Buchanan Rachelle,Lavender Kerry J.ORCID,Darbellay Joseph,Rogers Matthew B.,Lew Jocelyne,Gerdts Volker,Falzarano DarrylORCID,Skowronski Danuta M.,Sjaarda CalvinORCID,Kelvin Alyson A.ORCID

Abstract

AbstractSARS-CoV-2 variants and seasonal coronaviruses continue to cause disease and coronaviruses in the animal reservoir pose a constant spillover threat. Importantly, understanding of how previous infection may influence future exposures, especially in the context of seasonal coronaviruses and SARS-CoV-2 variants, is still limited. Here we adopted a step-wise experimental approach to examine the primary immune response and subsequent immune recall toward antigenically distinct coronaviruses using male Syrian hamsters. Hamsters were initially inoculated with seasonal coronaviruses (HCoV-NL63, HCoV-229E, or HCoV-OC43), or SARS-CoV-2 pango B lineage virus, then challenged with SARS-CoV-2 pango B lineage virus, or SARS-CoV-2 variants Beta or Omicron. Although infection with seasonal coronaviruses offered little protection against SARS-CoV-2 challenge, HCoV-NL63-infected animals had an increase of the previously elicited HCoV-NL63-specific neutralizing antibodies during challenge with SARS-CoV-2. On the other hand, primary infection with HCoV-OC43 induced distinct T cell gene signatures. Gene expression profiling indicated interferon responses and germinal center reactions to be induced during more similar primary infection-challenge combinations while signatures of increased inflammation as well as suppression of the antiviral response were observed following antigenically distant viral challenges. This work characterizes and analyzes seasonal coronaviruses effect on SARS-CoV-2 secondary infection and the findings are important for pan-coronavirus vaccine design.

Funder

Gouvernement du Canada | Instituts de Recherche en Santé du Canada | CIHR Skin Research Training Centre

Coalition for Epidemic Preparedness

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Structural basis for the inhibition of the HCoV-NL63 main protease Mpro by X77;Biochemical and Biophysical Research Communications;2024-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3