A big data approach to improving the vehicle emission inventory in China

Author:

Deng FanyuanORCID,Lv ZhaofengORCID,Qi LijuanORCID,Wang XiaotongORCID,Shi MengshuangORCID,Liu HuanORCID

Abstract

AbstractEstimating truck emissions accurately would benefit atmospheric research and public health protection. Here, we developed a full-sample enumeration approach TrackATruck to bridge low-frequency but full-size vehicles driving big data to high-resolution emission inventories. Based on 19 billion trajectories, we show how big the emission difference could be using different approaches: 99% variation coefficients on regional total (including 31% emissions from non-local trucks), and ± as large as 15 times on individual counties. Even if total amounts are set the same, the emissions on primary cargo routes were underestimated in the former by a multiple of 2–10 using aggregated approaches. Time allocation proxies are generated, indicating the importance of day-to-day estimation because the variation reached 26-fold. Low emission zone policy reduced emissions in the zone, but raised emissions in upwind areas in Beijing's case. Comprehensive measures should be considered, e.g. the demand-side optimization.

Funder

National Natural Science Foundation of China

Royal Society

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry

Reference48 articles.

Cited by 78 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3