Abstract
AbstractOrganolead halide hybrids have many promising attributes for photocatalysis, e.g. tunable bandgaps and excellent carrier transport, but their instability constraints render them vulnerable to polar molecules and limit their photocatalysis in moisture. Herein, we report the construction of metal–organic frameworks based on [Pb2X]3+ (X = Br–/I–) chains as secondary building units and 2-amino-terephthalate as organic linkers, and extend their applications in photocatalytic CO2 reduction with water vapor as the reductant. Hall effect measurement and ultrafast transient absorption spectroscopy demonstrate the bromo/iodo-bridged frameworks have substantially enhanced photocarrier transport, which results in photocatalytic performances superior to conventional metal-oxo metal-organic frameworks. Moreover, in contrast to lead perovskites, the [Pb2X]3+-based frameworks have accessible porosity and high moisture stability for gas-phase photocatalytic reaction between CO2 and H2O. This work significantly advances the excellent carrier transport of lead perovskites into the field of metal-organic frameworks.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Shanghai
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary
Cited by
63 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献