Metavalently bonded tellurides: the essence of improved thermoelectric performance in elemental Te

Author:

An DechengORCID,Zhang Senhao,Zhai Xin,Yang Wutao,Wu Riga,Zhang Huaide,Fan Wenhao,Wang Wenxian,Chen Shaoping,Cojocaru-Mirédin Oana,Zhang Xian-MingORCID,Wuttig MatthiasORCID,Yu YuanORCID

Abstract

AbstractElemental Te is important for semiconductor applications including thermoelectric energy conversion. Introducing dopants such as As, Sb, and Bi has been proven critical for improving its thermoelectric performance. However, the remarkably low solubility of these elements in Te raises questions about the mechanism with which these dopants can improve the thermoelectric properties. Indeed, these dopants overwhelmingly form precipitates rather than dissolve in the Te lattice. To distinguish the role of doping and precipitation on the properties, we have developed a correlative method to locally determine the structure-property relationship for an individual matrix or precipitate. We reveal that the conspicuous enhancement of electrical conductivity and power factor of bulk Te stems from the dopant-induced metavalently bonded telluride precipitates. These precipitates form electrically beneficial interfaces with the Te matrix. A quantum-mechanical-derived map uncovers more candidates for advancing Te thermoelectrics. This unconventional doping scenario adds another recipe to the design options for thermoelectrics and opens interesting pathways for microstructure design.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Reference84 articles.

1. Cartwright, C. H., Haberfeld-Schwarz, M. & Fowler, R. H. On some electron properties of tellurium and Wilson’s mechanism of semi-conductivity. Proc. R. Soc. Lond. A Math. Phys. Sci. 148, 648–664 (1935).

2. Fukuroi, T., Tanuma, S. & Tobisawa, S. Electrical properties of antimony-doped tellurium crystals. Sci. Rep. Res. Inst. Ser. A 4, 283–297 (1952).

3. Lin, S. et al. Tellurium as a high-performance elemental thermoelectric. Nat. Commun. 7, 10287 (2016).

4. Abbey, S. et al. Twisted grain boundary leads to high thermoelectric performance in tellurium crystals. Energy Environ. Sci. 16, 125–137 (2023).

5. Wu, W., Qiu, G., Wang, Y., Wang, R. & Ye, P. Tellurene: its physical properties, scalable nanomanufacturing, and device applications. Chem. Soc. Rev. 47, 7203–7212 (2018).

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3