Abstract
AbstractThe chemical recycling of polyester wastes is of great significance for sustainable development, which also provides an opportunity to access various oxygen-containing chemicals, but generally suffers from low efficiency or separation difficulty. Herein, we report anatase TiO2 supported Ru and Mo dual-atom catalysts, which achieve transformation of various polyesters into corresponding diols in 100% selectivity via hydrolysis and subsequent hydrogenation in water under mild conditions (e.g., 160 °C, 4 MPa). Compelling evidence is provided for the coexistence of Ru single-atom and O-bridged Ru and Mo dual-atom sites within this kind of catalysts. It is verified that the Ru single-atom sites activate H2 for hydrogenation of carboxylic acid derived from polyester hydrolysis, and the O-bridged Ru and Mo dual-atom sites suppress hydrodeoxygenation of the resultant alcohols due to a high reaction energy barrier. Notably, this kind of dual-atom catalysts can be regenerated with high activity and stability. This work presents an effective way to reconstruct polyester wastes into valuable diols, which may have promising application potential.
Funder
National Natural Science Foundation of China
CAS | Institute of Chemistry, Chinese Academy of Sciences
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献