Highly efficient recycling of polyester wastes to diols using Ru and Mo dual-atom catalyst

Author:

Tang Minhao,Shen Ji,Wang Yiding,Zhao YanfeiORCID,Gan Tao,Zheng Xusheng,Wang DingshengORCID,Han BuxingORCID,Liu ZhiminORCID

Abstract

AbstractThe chemical recycling of polyester wastes is of great significance for sustainable development, which also provides an opportunity to access various oxygen-containing chemicals, but generally suffers from low efficiency or separation difficulty. Herein, we report anatase TiO2 supported Ru and Mo dual-atom catalysts, which achieve transformation of various polyesters into corresponding diols in 100% selectivity via hydrolysis and subsequent hydrogenation in water under mild conditions (e.g., 160 °C, 4 MPa). Compelling evidence is provided for the coexistence of Ru single-atom and O-bridged Ru and Mo dual-atom sites within this kind of catalysts. It is verified that the Ru single-atom sites activate H2 for hydrogenation of carboxylic acid derived from polyester hydrolysis, and the O-bridged Ru and Mo dual-atom sites suppress hydrodeoxygenation of the resultant alcohols due to a high reaction energy barrier. Notably, this kind of dual-atom catalysts can be regenerated with high activity and stability. This work presents an effective way to reconstruct polyester wastes into valuable diols, which may have promising application potential.

Funder

National Natural Science Foundation of China

CAS | Institute of Chemistry, Chinese Academy of Sciences

Publisher

Springer Science and Business Media LLC

Reference48 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3