Abstract
AbstractPhysical fatigue crucially influences our decisions to partake in effortful action. However, there is a limited understanding of how fatigue impacts effort-based decision-making at the level of brain and behavior. We use functional magnetic resonance imaging to record markers of brain activity while human participants engage in uncertain choices for prospective physical effort, before and after bouts of exertion. Using computational modeling of choice behavior we find that fatiguing exertions cause participants to increase their subjective cost of effort, compared to a baseline/rested state. We describe a mechanism by which signals related to motor cortical state in premotor cortex influence effort value computations, instantiated by insula, thereby increasing an individual’s subjective valuation of prospective physical effort while fatigued. Our findings provide a neurobiological account of how information about bodily state modulates decisions to engage in physical activity.
Funder
U.S. Department of Health & Human Services | NIH | National Institute of Mental Health
U.S. Department of Health & Human Services | NIH | Eunice Kennedy Shriver National Institute of Child Health and Human Development
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry
Reference48 articles.
1. Croxson, P. L., Walton, M. E., O’Reilly, J. X., Behrens, T. E. J. & Rushworth, M. F. S. Effort-based cost–benefit valuation and the human brain. J. Neurosci.29, 4531–4541 (2009).
2. Prévost, C., Pessiglione, M., Météreau, E., Cléry-Melin, M.-L. & Dreher, J.-C. Separate valuation subsystems for delay and effort decision costs. J. Neurosci.30, 14080–14090 (2010).
3. Kurniawan, I. T., Guitart-Masip, M., Dayan, P. & Dolan, R. J. Effort and valuation in the brain: the effects of anticipation and execution. J. Neurosci.33, 6160–6169 (2013).
4. Skvortsova, V., Palminteri, S. & Pessiglione, M. Learning to minimize efforts versus maximizing rewards: computational principles and neural correlates. J. Neurosci.34, 15621–15630 (2014).
5. Bonnelle, V., Manohar, S., Behrens, T. & Husain, M. Individual differences in premotor brain systems underlie behavioral apathy. Cereb. Cortex26, 807–819 (2016).
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献