Abstract
AbstractSulfur has been considered to be a predominant light element in the Martian core, and thus the sound velocity of Fe-S alloys at relevant high pressure and temperature is of great importance to interpret its seismological data. Here we measured the compressional sound velocity (VP) of liquid Fe, Fe80S20 and Fe57S43 using ultrasonic pulse-echo overlap method combined with a Kawai-type multi-anvil apparatus up to 20 GPa, likely corresponding to the condition at the uppermost core of Mars. The results demonstrate that the VP of liquid iron is least sensitive to its sulfur concentration in the Mars’ whole core pressure range. The comparison of seismic wave speeds of Fe-S liquids with future observations will therefore tell whether the Martian core is molten and contains impurity elements other than sulfur.
Funder
MEXT | Japan Society for the Promotion of Science
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry
Reference42 articles.
1. Yoder, C. F., Konopliv, A. S., Yuan, D. N., Standish, E. M. & Folkner, W. M. Fluid core size of Mars from detection of the solar tide. Science 300, 299–303 (2003).
2. Rivoldini, A., Van Hoolst, T., Verhoeven, O., Mocquet, A. & Dehant, V. Geodesy constraints on the interior structure and composition of Mars. Icarus 213, 451–472 (2011).
3. Giardini, D. et al. The seismicity of Mars. Nat. Geosci. 13, 205–212 (2020).
4. Taylor, G. J. The bulk composition of Mars. Chem. Erde 73, 401–420 (2013).
5. Dreibus, G. & Wänke, H. Mars, a volatile-rich planet. Meteoritics 20, 367–381 (1985).
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献