Abstract
AbstractThe rational design of carbon-supported transition-metal single-atom catalysts requires the precise arrangement of heteroatoms within the single-atom catalysts. However, achieving this design is challenging due to the collapse of the structure during the pyrolysis. Here, we introduce a topological heteroatom-transfer strategy to prevent the collapse and accurately control the P coordination in carbon-supported single-atom catalysts. As an illustration, we have prepared self-assembled helical fibers with encapsulated cavities. Within these cavities, adjustable functional groups can chelate metal ions (Nx···Mn+···Oy), facilitating the preservation of the structure during the pyrolysis based phosphidation. This process allows for the transfer of heteroatoms from the assembly into single-atom catalysts, resulting in the precise coordination tailoring. Notably, the Co–P2N2–C catalyst exhibits electrocatalytic performance as a non-noble metal single-atom catalyst for alkaline hydrogen evolution, attaining a current density of 100 mA cm−2 with an overpotential of only 131 mV.
Publisher
Springer Science and Business Media LLC
Reference57 articles.
1. Jiao, L. et al. Chemical vapour deposition of Fe–N–C oxygen reduction catalysts with full utilization of dense Fe–N4 sites. Nat. Mater. 20, 1385–1391 (2021).
2. Fei, H. et al. General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities. Nat. Catal. 1, 63–72 (2018).
3. Gawande, M. B., Fornasiero, P. & Zbořil, R. Carbon-based single-atom catalysts for advanced applications. ACS Catal. 10, 2231–2259 (2020).
4. Pan, Y. et al. Regulating the coordination structure of single-atom Fe-NxCy catalytic sites for benzene oxidation. Nat. Commun. 10, 4290 (2019).
5. Sun, J., Yang, H., Gao, W., Cao, T. & Zhao, G. Diatomic Pd−Cu metal-phosphorus sites for complete N≡N bond formation in photoelectrochemical nitrate reduction. Angew. Chem. Int. Ed. 7, e202211373 (2022).
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献