Velocity-dependent heat transfer controls temperature in fracture networks

Author:

Heinze ThomasORCID,Pastore Nicola

Abstract

AbstractHeat transfer between a fluid and the surrounding rock in the subsurface is a crucial process not only, but most obviously, in geothermal systems. Heat transfer is described by Newton’s law of cooling, relating the heat transferred to a coefficient, the specific surface area, and the temperature difference between rock and fluid. However, parameterizing the heat transfer coefficient in fracture networks poses a major challenge. Here we show that within a fracture network the heat transfer coefficient is strongly heterogeneous but that laboratory single fracture experiments can provide a reasonable estimate in dependence of flow rate. We investigate the distribution of the heat transfer coefficient experimentally as well as numerically and analyze the heat transfer at individual fractures. Our results improve the prediction of temperatures in engineered and natural geothermal systems and allow sustainable management and design of reservoirs considering the role of individual fractures.

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3