High carbon dioxide emissions from Australian estuaries driven by geomorphology and climate

Author:

Yeo Jacob Z.-Q.ORCID,Rosentreter Judith A.ORCID,Oakes Joanne M.ORCID,Schulz Kai G.ORCID,Eyre Bradley D.ORCID

Abstract

AbstractEstuaries play an important role in connecting the global carbon cycle across the land-to-ocean continuum, but little is known about Australia’s contribution to global CO2 emissions. Here we present an Australia-wide assessment, based on CO2 concentrations for 47 estuaries upscaled to 971 assessed Australian estuaries. We estimate total mean (±SE) estuary CO2 emissions of 8.67 ± 0.54 Tg CO2-C yr−1, with tidal systems, lagoons, and small deltas contributing 94.4%, 3.1%, and 2.5%, respectively. Although higher disturbance increased water-air CO2 fluxes, its effect on total Australian estuarine CO2 emissions was small due to the large surface areas of low and moderately disturbed tidal systems. Mean water-air CO2 fluxes from Australian small deltas and tidal systems were higher than from global estuaries because of the dominance of macrotidal subtropical and tropical systems in Australia, which have higher emissions due to lateral inputs. We suggest that global estuarine CO2 emissions should be upscaled based on geomorphology, but should also consider land-use disturbance, and climate.

Funder

The funding grants are provided by the Australian Research Council and was awarded to co-author Bradley Eyre.

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3