Abstract
AbstractThe photocurrent generation in photovoltaics relies essentially on the interface of p-n junction or Schottky barrier with the photoelectric efficiency constrained by the Shockley-Queisser limit. The recent progress has shown a promising route to surpass this limit via the bulk photovoltaic effect for crystals without inversion symmetry. Here we report the bulk photovoltaic effect in two-dimensional ferroelectric CuInP2S6 with enhanced photocurrent density by two orders of magnitude higher than conventional bulk ferroelectric perovskite oxides. The bulk photovoltaic effect is inherently associated to the room-temperature polar ordering in two-dimensional CuInP2S6. We also demonstrate a crossover from two-dimensional to three-dimensional bulk photovoltaic effect with the observation of a dramatic decrease in photocurrent density when the thickness of the two-dimensional material exceeds the free path length at around 40 nm. This work spotlights the potential application of ultrathin two-dimensional ferroelectric materials for the third-generation photovoltaic cells.
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry
Cited by
157 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献