Abstract
AbstractSignal loss in blood oxygen level-dependent (BOLD) functional neuroimaging is common and can lead to misinterpretation of findings. Here, we reconstructed compromised fMRI signal using deep machine learning. We trained a model to learn principles governing BOLD activity in one dataset and reconstruct artificially compromised regions in an independent dataset, frame by frame. Intriguingly, BOLD time series extracted from reconstructed frames are correlated with the original time series, even though the frames do not independently carry any temporal information. Moreover, reconstructed functional connectivity maps exhibit good correspondence with the original connectivity maps, indicating that the model recovers functional relationships among brain regions. We replicated this result in two healthy datasets and in patients whose scans suffered signal loss due to intracortical electrodes. Critically, the reconstructions capture individual-specific information. Deep machine learning thus presents a unique opportunity to reconstruct compromised BOLD signal while capturing features of an individual’s own functional brain organization.
Funder
Gouvernement du Canada | Canadian Institutes of Health Research
National Natural Science Foundation of China
U.S. Department of Health & Human Services | National Institutes of Health
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry
Reference36 articles.
1. Sammartino, F. et al. 3-Tesla MRI in patients with fully implanted deep brain stimulation devices: a preliminary study in 10 patients. J. Neurosurg. 127, 892–898 (2017).
2. Goodfellow, I. et al. Generative adversarial nets. Adv. Neural Inform. Process. Syst. 2672–2680 (2014).
3. Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T. & Efros, A. A. Context encoders: Feature learning by inpainting. In Proc. IEEE Conference on Computer Vision and Pattern Recognition 2536–2544 (2016).
4. Radford, A., Metz, L. & Chintala, S. Unsupervised representation learning with deep convolutional generative adversarial networks. Preprint at https://arxiv.org/abs/1511.06434 (2015).
5. Schlegl, T., Seeböck, P., Waldstein, S. M., Schmidt-Erfurth, U. & Langs, G. Unsupervised anomaly detection with generative adversarial networks to guide marker discovery. In International Conference on Information Processing in Medical Imaging 146–157 (2017).
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献