Abstract
AbstractDeep Earth degassing is a critical forcing factor for atmospheric CO2 variations and palaeoclimate changes in Earth’s history. For the Cenozoic, the key driving mechanism of atmospheric CO2 variations remains controversial. Here we analyse three stages of collision-related magmatism in Tibet, which correspond temporally with the three major stages of atmospheric CO2 variations in the Cenozoic and explore the possibility of a causal link between these phenomena. To this end we present geochemical data for the three stages of magmatic rocks in Tibet, which we use to inform a model calculating the continental collision-induced CO2 emission flux associated with the evolving Neo-Tethyan to continental subduction over the Cenozoic. The correlation between our modelled CO2 emission rates and the global atmospheric CO2 curve is consistent with the hypothesis that the India-Asia collision was the primary driver of changes in atmospheric CO2 over the Cenozoic.
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry
Cited by
62 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献