Exploring negative emission potential of biochar to achieve carbon neutrality goal in China

Author:

Deng XuORCID,Teng FeiORCID,Chen MinpengORCID,Du Zhangliu,Wang Bin,Li Renqiang,Wang Pan

Abstract

AbstractLimiting global warming to within 1.5 °C might require large-scale deployment of premature negative emission technologies with potentially adverse effects on the key sustainable development goals. Biochar has been proposed as an established technology for carbon sequestration with co-benefits in terms of soil quality and crop yield. However, the considerable uncertainties that exist in the potential, cost, and deployment strategies of biochar systems at national level prevent its deployment in China. Here, we conduct a spatially explicit analysis to investigate the negative emission potential, economics, and priority deployment sites of biochar derived from multiple feedstocks in China. Results show that biochar has negative emission potential of up to 0.92 billion tons of CO2 per year with an average net cost of US$90 per ton of CO2 in a sustainable manner, which could satisfy the negative emission demands in most mitigation scenarios compatible with China’s target of carbon neutrality by 2060.

Funder

Ministry of Science and Technology of the People's Republic of China

National Natural Science Foundation of China

Tsinghua University Initiative Scientific Research Program

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary

Reference70 articles.

1. Gillett, N. P. et al. Constraining human contributions to observed warming since the pre-industrial period. Nat. Clim. Chang 11, 207–212 (2021).

2. IPCC. Climate Change 2014: Mitigation of Climate Change (Cambridge University Press, 2014).

3. IPCC. Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty (Cambridge University Press, 2018).

4. Muratori, M. et al. EMF-33 insights on bioenergy with carbon capture and storage (BECCS). Clim. Change 163, 1621–1637 (2020).

5. Huang, X., Chang, S., Zheng, D. & Zhang, X. The role of BECCS in deep decarbonization of China’s economy: a computable general equilibrium analysis. Energy Econ. 92, 104968 (2020).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3