Detecting the ultra low dimensionality of real networks

Author:

Almagro PedroORCID,Boguñá MariánORCID,Serrano M. ÁngelesORCID

Abstract

AbstractReducing dimension redundancy to find simplifying patterns in high-dimensional datasets and complex networks has become a major endeavor in many scientific fields. However, detecting the dimensionality of their latent space is challenging but necessary to generate efficient embeddings to be used in a multitude of downstream tasks. Here, we propose a method to infer the dimensionality of networks without the need for any a priori spatial embedding. Due to the ability of hyperbolic geometry to capture the complex connectivity of real networks, we detect ultra low dimensionality far below values reported using other approaches. We applied our method to real networks from different domains and found unexpected regularities, including: tissue-specific biomolecular networks being extremely low dimensional; brain connectomes being close to the three dimensions of their anatomical embedding; and social networks and the Internet requiring slightly higher dimensionality. Beyond paving the way towards an ultra efficient dimensional reduction, our findings help address fundamental issues that hinge on dimensionality, such as universality in critical behavior.

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary

Reference64 articles.

1. Kainen, P. C. Utilizing Geometric Anomalies of High Dimension: When Complexity Makes Computation Easier, 283–294 (Birkhäuser Boston, Boston, MA, 1997).

2. Donoho, D. L. et al. High-dimensional data analysis: the curses and blessings of dimensionality. AMS Math Challenges Lecture 1, 32 (2000).

3. Bellman, R. Rand Corporation, and Karreman Mathematics Research Collection. Dynamic Programming. Rand Corporation research study. Princeton University Press, (1957).

4. Ball, K. et al. An elementary introduction to modern convex geometry. Flavors of Geometry, Vol 31, 1–58 (Cambridge University Press, Cambridge, 1997).

5. Ledoux, M. The concentration of measure phenomenon. Number 89. (American Mathematical Society, 2001).

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3