Host-derived protein profiles of human neonatal meconium across gestational ages

Author:

Shitara YoshihikoORCID,Konno Ryo,Yoshihara MasahitoORCID,Kashima KoheiORCID,Ito Atsushi,Mukai TakeoORCID,Kimoto GohORCID,Kakiuchi SatsukiORCID,Ishikawa Masaki,Kakihara Tomo,Nagamatsu Takeshi,Takahashi Naoto,Fujishiro Jun,Kawakami EiryoORCID,Ohara OsamuORCID,Kawashima YusukeORCID,Watanabe EiichiroORCID

Abstract

AbstractMeconium, a non-invasive biomaterial reflecting prenatal substance accumulation, could provide valuable insights into neonatal health. However, the comprehensive protein profile of meconium across gestational ages remains unclear. Here, we conducted an extensive proteomic analysis of first meconium from 259 newborns across varied gestational ages to delineate protein composition and elucidate its relevance to neonatal diseases. The first meconium samples were collected, with the majority obtained before feeding, and the mean time for the first meconium passage from the anus was 11.9 ± 9.47 h. Our analysis revealed 5370 host-derived meconium proteins, which varied depending on sex and gestational age. Specifically, meconium from preterm infants exhibited elevated concentrations of proteins associated with the extracellular matrix. Additionally, the protein profiles of meconium also exhibited unique variations depending on both specific diseases, including gastrointestinal diseases, congenital heart diseases, and maternal conditions. Furthermore, we developed a machine learning model to predict gestational ages using meconium proteins. Our model suggests that newborns with gastrointestinal diseases and congenital heart diseases may have immature gastrointestinal systems. These findings highlight the intricate relationship between clinical parameters and meconium protein composition, offering potential for a novel approach to assess neonatal gastrointestinal health.

Funder

MEXT | Japan Society for the Promotion of Science

Kawano Masanori Public Interest Incorporated Foundation for Promotion of Pediatrics, and Gunma Foundation for Medicine and Health Science.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3