Observation of Chiral-selective room-temperature phosphorescence enhancement via chirality-dependent energy transfer

Author:

Chen BiaoORCID,Huang Wenhuan,Zhang GuoqingORCID

Abstract

AbstractPure organic room-temperature phosphorescence (RTP), particularly from guest-host doped systems, has seen exponential growth in the last several years due to their high modulation flexibility, and yet challenges remain with respect to mechanistic elucidations and advantageous applications. Here we show that by constructing guest-host doped RTP systems from chiral components, namely, chiral amino compound-modified phthalimide hosts and naphthalimide guests, a chiral-selective RTP enhancement phenomenon can be observed. For example, R-enantiomeric guests in R-enantiomeric hosts produce strong red RTP afterglow while no appreciable RTP could be observed in the S-R guest-host counterpart. An unprecedented RTP intensity difference > 102 folds with the ability to distinguish an enantiomeric excess of 98% could be achieved. Temperature-dependent measurements suggest that a chirality-dependent energy transfer process may be involved in the observed phenomenon, which can be harnessed to extend the RTP application to the chiral recognition of amino compounds, such as amino alcohols.

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3