Investigating grey matter volumetric trajectories through the lifespan at the individual level
-
Published:2024-07-15
Issue:1
Volume:15
Page:
-
ISSN:2041-1723
-
Container-title:Nature Communications
-
language:en
-
Short-container-title:Nat Commun
Author:
Shi RunyeORCID, Xiang ShitongORCID, Jia TianyeORCID, Robbins Trevor W.ORCID, Kang JujiaoORCID, Banaschewski TobiasORCID, Barker Gareth J.ORCID, Bokde Arun L. W.ORCID, Desrivières SylvaneORCID, Flor HertaORCID, Grigis Antoine, Garavan HughORCID, Gowland PennyORCID, Heinz AndreasORCID, Brühl RüdigerORCID, Martinot Jean-LucORCID, Martinot Marie-Laure Paillère, Artiges EricORCID, Nees Frauke, Orfanos Dimitri PapadopoulosORCID, Paus TomášORCID, Poustka Luise, Hohmann SarahORCID, Millenet Sabina, Fröhner Juliane H.ORCID, Smolka Michael N.ORCID, Vaidya Nilakshi, Walter HenrikORCID, Whelan RobertORCID, Schumann GunterORCID, Lin XiaoleiORCID, Sahakian Barbara J.ORCID, Feng JianfengORCID, Jia Tianye, Banaschewski Tobias, Barker Gareth J., Bokde Arun L. W., Desrivières Sylvane, Flor Herta, Grigis Antoine, Garavan Hugh, Gowland Penny, Heinz Andreas, Brühl Rüdiger, Martinot Jean-Luc, Martinot Marie-Laure Paillère, Artiges Eric, Nees Frauke, Orfanos Dimitri Papadopoulos, Paus Tomáš, Poustka Luise, Hohmann Sarah, Millenet Sabina, Fröhner Juliane H., Smolka Michael N., Vaidya Nilakshi, Walter Henrik, Whelan Robert, Schumann Gunter,
Abstract
AbstractAdolescents exhibit remarkable heterogeneity in the structural architecture of brain development. However, due to limited large-scale longitudinal neuroimaging studies, existing research has largely focused on population averages, and the neurobiological basis underlying individual heterogeneity remains poorly understood. Here we identify, using the IMAGEN adolescent cohort followed up over 9 years (14–23 y), three groups of adolescents characterized by distinct developmental patterns of whole-brain gray matter volume (GMV). Group 1 show continuously decreasing GMV associated with higher neurocognitive performances than the other two groups during adolescence. Group 2 exhibit a slower rate of GMV decrease and lower neurocognitive performances compared with Group 1, which was associated with epigenetic differences and greater environmental burden. Group 3 show increasing GMV and lower baseline neurocognitive performances due to a genetic variation. Using the UK Biobank, we show these differences may be attenuated in mid-to-late adulthood. Our study reveals clusters of adolescent neurodevelopment based on GMV and the potential long-term impact.
Publisher
Springer Science and Business Media LLC
Reference70 articles.
1. Giedd, J. N. et al. Brain development during childhood and adolescence: a longitudinal MRI study. Nat. Neurosci. 2, 861–863 (1999). 2. Lenroot, R. K. & Giedd, J. N. Brain development in children and adolescents: insights from anatomical magnetic resonance imaging. Neurosci. Biobehav. Rev. 30, 718–729 (2006). 3. Tamnes, C. K. et al. Development of the Cerebral Cortex Across Adolescence: A Multisample Study Of Inter-related Longitudinal Changes In Cortical Volume, Surface Area, And Thickness. J. Neurosci. 37, 3402–3412 (2017). 4. Paus, T., Keshavan, M. & Giedd, J. N. Why do many psychiatric disorders emerge during adolescence? Nat. Rev. Neurosci. 9, 947–957 (2008). 5. Blakemore, S. J. Adolescence and mental health. Lancet 393, 2030–2031 (2019).
|
|