Spatial probabilistic mapping of metabolite ensembles in mass spectrometry imaging

Author:

Abu Sammour DenisORCID,Cairns James L.ORCID,Boskamp TobiasORCID,Marsching Christian,Kessler TobiasORCID,Ramallo Guevara CarinaORCID,Panitz Verena,Sadik AhmedORCID,Cordes JonasORCID,Schmidt StefanORCID,Mohammed Shad A.ORCID,Rittel Miriam F.ORCID,Friedrich Mirco,Platten MichaelORCID,Wolf IvoORCID,von Deimling AndreasORCID,Opitz Christiane A.,Wick WolfgangORCID,Hopf CarstenORCID

Abstract

AbstractMass spectrometry imaging vows to enable simultaneous spatially resolved investigation of hundreds of metabolites in tissues, but it primarily relies on traditional ion images for non-data-driven metabolite visualization and analysis. The rendering and interpretation of ion images neither considers nonlinearities in the resolving power of mass spectrometers nor does it yet evaluate the statistical significance of differential spatial metabolite abundance. Here, we outline the computational framework moleculaR (https://github.com/CeMOS-Mannheim/moleculaR) that is expected to improve signal reliability by data-dependent Gaussian-weighting of ion intensities and that introduces probabilistic molecular mapping of statistically significant nonrandom patterns of relative spatial abundance of metabolites-of-interest in tissue. moleculaR also enables cross-tissue statistical comparisons and collective molecular projections of entire biomolecular ensembles followed by their spatial statistical significance evaluation on a single tissue plane. It thereby fosters the spatially resolved investigation of ion milieus, lipid remodeling pathways, or complex scores like the adenylate energy charge within the same image.

Funder

Klaus-Tschira Foundation project MALDISTAR

Deutsche Forschungsgemeinschaft

Deutscher Akademischer Austauschdienst

Deutsche Krebshilfe

Bundesministerium für Bildung und Forschung

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3