AI-assisted discovery of high-temperature dielectrics for energy storage

Author:

Gurnani RishiORCID,Shukla Stuti,Kamal Deepak,Wu Chao,Hao Jing,Kuenneth ChristopherORCID,Aklujkar Pritish,Khomane Ashish,Daniels RobertORCID,Deshmukh Ajinkya A.,Cao YangORCID,Sotzing Gregory,Ramprasad RampiORCID

Abstract

AbstractElectrostatic capacitors play a crucial role as energy storage devices in modern electrical systems. Energy density, the figure of merit for electrostatic capacitors, is primarily determined by the choice of dielectric material. Most industry-grade polymer dielectrics are flexible polyolefins or rigid aromatics, possessing high energy density or high thermal stability, but not both. Here, we employ artificial intelligence (AI), established polymer chemistry, and molecular engineering to discover a suite of dielectrics in the polynorbornene and polyimide families. Many of the discovered dielectrics exhibit high thermal stability and high energy density over a broad temperature range. One such dielectric displays an energy density of 8.3 J cc−1 at 200 °C, a value 11 × that of any commercially available polymer dielectric at this temperature. We also evaluate pathways to further enhance the polynorbornene and polyimide families, enabling these capacitors to perform well in demanding applications (e.g., aerospace) while being environmentally sustainable. These findings expand the potential applications of electrostatic capacitors within the 85–200 °C temperature range, at which there is presently no good commercial solution. More broadly, this research demonstrates the impact of AI on chemical structure generation and property prediction, highlighting the potential for materials design advancement beyond electrostatic capacitors.

Funder

United States Department of Defense | United States Navy | ONR | Office of Naval Research Global

U.S. Department of Energy

Alexander von Humboldt-Stiftung

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3