Observation of magneto-electric rectification at non-relativistic intensities

Author:

Trinh M. Tuan,Smail Gregory,Makhal Krishnandu,Yang Da Seul,Kim JinsangORCID,Rand Stephen C.

Abstract

AbstractThe subject of electromagnetism has often been called electrodynamics to emphasize the dominance of the electric field in dynamic light–matter interactions that take place under non-relativistic conditions. Here we show experimentally that the often neglected optical magnetic field can nevertheless play an important role in a class of optical nonlinearities driven by both the electric and magnetic components of light at modest (non-relativistic) intensities. We specifically report the observation of magneto-electric rectification, a previously unexplored nonlinearity at the molecular level which has important potential for energy conversion, ultrafast switching, nano-photonics, and nonlinear optics. Our experiments were carried out in nanocrystalline pentacene thin films possessing spatial inversion symmetry that prohibited second-order, all-electric nonlinearities but allowed magneto-electric rectification.

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3