Probing excitations and cooperatively rearranging regions in deeply supercooled liquids

Author:

Ortlieb Levke,Ingebrigtsen Trond S.ORCID,Hallett James E.ORCID,Turci FrancescoORCID,Royall C. PatrickORCID

Abstract

AbstractUpon approaching the glass transition, the relaxation of supercooled liquids is controlled by activated processes, which become dominant at temperatures below the so-called dynamical crossover predicted by Mode Coupling theory (MCT). Two of the main frameworks rationalising this behaviour are dynamic facilitation theory (DF) and the thermodynamic scenario which give equally good descriptions of the available data. Only particle-resolved data from liquids supercooled below the MCT crossover can reveal the microscopic mechanism of relaxation. By employing state-of-the-art GPU simulations and nano-particle resolved colloidal experiments, we identify the elementary units of relaxation in deeply supercooled liquids. Focusing on the excitations of DF and cooperatively rearranging regions (CRRs) implied by the thermodynamic scenario, we find that several predictions of both hold well below the MCT crossover: for the elementary excitations, their density follows a Boltzmann law, and their timescales converge at low temperatures. For CRRs, the decrease in bulk configurational entropy is accompanied by the increase of their fractal dimension. While the timescale of excitations remains microscopic, that of CRRs tracks a timescale associated with dynamic heterogeneity, $${t}^{*} \sim {\tau }_{\alpha }^{0.8}$$ t * ~ τ α 0.8 . This timescale separation of excitations and CRRs opens the possibility of accumulation of excitations giving rise to cooperative behaviour leading to CRRs.

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3