Abstract
AbstractRegulating nonlinear optical (NLO) property of metal−organic frameworks (MOFs) is of pronounced significance for their scientific research and practical application, but the regulation through external stimuli is still a challenging task. Here we prepare and electrically control the nonlinear optical regulation of conductive MOFs Cu-HHTP films with [001]- (Cu-HHTP[001]) and [100]-orientations (Cu-HHTP[100]). Z-scan results show that the nonlinear absorption coefficient (β) of Cu-HHTP[001] film (7.60 × 10−6 m/W) is much higher than that of Cu-HHTP[100] film (0.84 × 10−6 m/W) at 0 V and the β of Cu-HHTP[001] and Cu-HHTP[100] films gradually increase to 3.84 × 10−5 and 1.71 × 10−6 m/W at 10 V by increasing the applied voltage, respectively. Due to 2D Cu-HHTP having anisotropy of charge transfer in different orientations, the NLO of MOFs film can be dependent on their growth orientations and improved by tuning the electrical field. This study provides more avenues for the regulation and NLO applications of MOFs.
Funder
National Natural Science Foundation of China
Youth Innovation Promotion Association of the Chinese Academy of Sciences
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary
Cited by
65 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献