Stereodefined polymetalloid alkenes synthesis via stereoselective boron-masking of polyborylated alkenes

Author:

Eghbarieh Nadim,Hanania Nicole,Masarwa AhmadORCID

Abstract

AbstractPolyborylated-alkenes are valuable polymetalloid reagents in modern organic synthesis, providing access to a wide array of transformations, including the construction of multiple C–C and C–heteroatom bonds. However, because they contain similar boryl groups, many times their transformation faces the main challenge in controlling the chemo-, regio- and stereoselectivity. One way to overcome these limitations is by installing different boron groups that can provide an opportunity to tune their reactivity toward better chemo-, regio- and stereoselectivity. Yet, the preparation of polyborylated-alkenes containing different boryl groups has been rare. Herein we report concise, highly site-selective, and stereoselective boron-masking strategies of polyborylated alkenes. This is achieved by designed stereoselective trifluorination and MIDA-ation reactions of readily available starting polyborylated alkenes. Additionally, the trifluoroborylated-alkenes undergo a stereospecific interconversion to Bdan-alkenes. These transition-metal free reactions provide a general and efficient method for the conversion of polyborylated alkenes to access 1,1-di-, 1,2-di-, 1,1,2-tris-(borylated) alkenes containing BF3M, Bdan, and BMIDA, a family of compounds that currently lack efficient synthetic access. Moreover, tetraborylethene undergoes the metal-free MIDA-ation reaction to provide the mono BMIDA tetraboryl alkene selectively. The mixed polyborylalkenes are then demonstrated to be useful in selective C–C and C–heteroatom bond-forming reactions. Given its simplicity and versatility, these stereoselective boron-masking approaches hold great promise for organoboron synthesis and will result in more transformations.

Funder

Israel Science Foundation

United States - Israel Binational Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3