Quantitative prediction of rate constants and its application to organic emitters

Author:

Shizu KatsuyukiORCID,Kaji HironoriORCID

Abstract

AbstractMany phenomena in nature consist of multiple elementary processes. If we can predict all the rate constants of respective processes quantitatively, we can comprehensively predict and understand various phenomena. Here, we report that it is possible to quantitatively predict all related rate constants and quantum yields without conducting experiments, using multiple-resonance thermally activated delayed fluorescence (MR–TADF) as an example. MR–TADFs are excellent emitters because of its narrow emission, high luminescence efficiency, and chemical stability, but they have one drawback: slow reverse intersystem crossing (RISC), leading to efficiency roll-off and reduced device lifetime. Here, we show a quantum chemical calculation method for quantitatively obtaining all the rate constants and quantum yields. This study reveals a strategy to improve RISC without compromising other important factors: radiative decay rate constants, photoluminescence quantum yields, and emission linewidths. Our method can be applied in a wide range of research fields, providing comprehensive understanding of the mechanism including the time evolution of excitons.

Funder

MEXT | Japan Society for the Promotion of Science

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3