Abstract
AbstractThe advance of genetic function indicators has enabled the observation of neuronal activities at single-cell resolutions. A major challenge for the applications on mammalian brains is the limited optical access depth. Currently, the method of choice to access deep brain structures is to insert miniature optical components. Among these validated miniature optics, the gradient-index (GRIN) lens has been widely employed for its compactness and simplicity. However, due to strong fourth-order astigmatism, GRIN lenses suffer from a small imaging field of view, which severely limits the measurement throughput and success rate. To overcome these challenges, we developed geometric transformation adaptive optics (GTAO), which enables adaptable achromatic large-volume correction through GRIN lenses. We demonstrate its major advances through in vivo structural and functional imaging of mouse brains. The results suggest that GTAO can serve as a versatile solution to enable large-volume recording of deep brain structures and activities through GRIN lenses.
Funder
U.S. Department of Health & Human Services | NIH | National Institute of Neurological Disorders and Stroke
U.S. Department of Health & Human Services | NIH | National Eye Institute
Publisher
Springer Science and Business Media LLC
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献