Nucleation phenomena and extreme vulnerability of spatial k-core systems

Author:

Xue LeyangORCID,Gao Shengling,Gallos Lazaros K.ORCID,Levy OrrORCID,Gross BnayaORCID,Di ZengruORCID,Havlin ShlomoORCID

Abstract

AbstractK-core percolation is a fundamental dynamical process in complex networks with applications that span numerous real-world systems. Earlier studies focus primarily on random networks without spatial constraints and reveal intriguing mixed-order transitions. However, real-world systems, ranging from transportation and communication networks to complex brain networks, are not random but are spatially embedded. Here, we study k-core percolation on two-dimensional spatially embedded networks and show that, in contrast to regular percolation, the length of connections can control the transition type, leading to four different types of phase transitions associated with interesting phenomena and a rich phase diagram. A key finding is the existence of a metastable phase where microscopic localized damage, independent of system size, can cause a macroscopic phase transition, a result which cannot be achieved in traditional percolation. In this case, local failures spontaneously propagate the damage radially until the system collapses, a phenomenon analogous to the nucleation process.

Funder

Israel Science Foundation

China Scholarship Council

National Science Foundation of China | Key Programme

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3