Abstract
AbstractTopological physics has revolutionized materials science, introducing topological phases of matter in diverse settings ranging from quantum to photonic and phononic systems. Herein, we present a family of topological systems, which we term “strain topological metamaterials”, whose topological properties are hidden and unveiled only under higher-order (strain) coordinate transformations. We firstly show that the canonical mass dimer, a model that can describe various settings such as electrical circuits and optics, among others, belongs to this family where strain coordinates reveal a topological nontriviality for the edge states at free boundaries. Subsequently, we introduce a mechanical analog of the Majorana-supporting Kitaev chain, which supports topological edge states for both fixed and free boundaries within the proposed framework. Thus, our findings not only extend the way topological edge states are identified, but also promote the fabrication of novel topological metamaterials in various fields, with more complex, tailored boundaries.
Funder
DST | Science and Engineering Research Board
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献