Abstract
AbstractDiatomic carbon (C2) is historically an elusive chemical species. It has long been believed that the generation of C2 requires extremely high physical energy, such as an electric carbon arc or multiple photon excitation, and so it has been the general consensus that the inherent nature of C2 in the ground state is experimentally inaccessible. Here, we present the chemical synthesis of C2 from a hypervalent alkynyl-λ3-iodane in a flask at room temperature or below, providing experimental evidence to support theoretical predictions that C2 has a singlet biradical character with a quadruple bond, thus settling a long-standing controversy between experimental and theoretical chemists, and that C2 serves as a molecular element in the bottom-up chemical synthesis of nanocarbons such as graphite, carbon nanotubes, and C60.
Funder
Nagase Science Technology Foundation
Sumitomo Foundation
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献