Solid state ionics enabled ultra-sensitive detection of thermal trace with 0.001K resolution in deep sea

Author:

Zhang YuchengORCID,Ye DekaiORCID,Li Mengxue,Zhang XiORCID,Di Chong-anORCID,Wang ChaoORCID

Abstract

AbstractThe deep sea remains the largest uncharted territory on Earth because it’s eternally dark under high pressure and the saltwater is corrosive and conductive. The harsh environment poses great difficulties for the durability of the sensing method and the device. Sea creatures like sharks adopt an elegant way to detect objects by the tiny temperature differences in the seawater medium using their extremely thermo-sensitive thermoelectric sensory organ on the nose. Inspired by shark noses, we designed and developed an elastic, self-healable and extremely sensitive thermal sensor which can identify a temperature difference as low as 0.01 K with a resolution of 0.001 K. The sensor can work reliably in seawater or under a pressure of 110 MPa without any encapsulation. Using the integrated temperature sensor arrays, we have constructed a model of an effective deep water mapping and detection device.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary

Reference33 articles.

1. Su, X., Ullah, I., Liu, X. & Choi, D. A review of underwater localization techniques, algorithms, and challenges. J. Sens. 2020, 1–24 (2020).

2. Mizokami, K. Lost Argentine submarine found one year after disappearance. https://www.popularmechanics.com/military/navy-ships/a25227128/lost-argentine-submarine-found-one-year-after-disappearance/ (2018).

3. Brown, B. R. Temperature response in electrosensors and thermal voltages in electrolytes. J. Biol. Phys. 36, 121–134 (2010).

4. Eastman, E. D. Theory of the soret effect. J. Am. Chem. Soc. 50, 283–291 (1928).

5. Tyrrell, H. J., Taylor, D. A. & Williams, C. M. The Seebeck effect in a purely ionic system. Nature 177, 668–669 (1956).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3