Self-powered high-sensitivity all-in-one vertical tribo-transistor device for multi-sensing-memory-computing

Author:

Liu Yaqian,Liu Di,Gao Changsong,Zhang XianghongORCID,Yu Rengjian,Wang Xiumei,Li Enlong,Hu Yuanyuan,Guo Tailiang,Chen HuipengORCID

Abstract

AbstractDevices with sensing-memory-computing capability for the detection, recognition and memorization of real time sensory information could simplify data conversion, transmission, storage, and operations between different blocks in conventional chips, which are invaluable and sought-after to offer critical benefits of accomplishing diverse functions, simple design, and efficient computing simultaneously in the internet of things (IOT) era. Here, we develop a self-powered vertical tribo-transistor (VTT) based on MXenes for multi-sensing-memory-computing function and multi-task emotion recognition, which integrates triboelectric nanogenerator (TENG) and transistor in a single device with the simple configuration of vertical organic field effect transistor (VOFET). The tribo-potential is found to be able to tune ionic migration in insulating layer and Schottky barrier height at the MXene/semiconductor interface, and thus modulate the conductive channel between MXene and drain electrode. Meanwhile, the sensing sensitivity can be significantly improved by 711 times over the single TENG device, and the VTT exhibits excellent multi-sensing-memory-computing function. Importantly, based on this function, the multi-sensing integration and multi-model emotion recognition are constructed, which improves the emotion recognition accuracy up to 94.05% with reliability. This simple structure and self-powered VTT device exhibits high sensitivity, high efficiency and high accuracy, which provides application prospects in future human-mechanical interaction, IOT and high-level intelligence.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary

Cited by 61 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3