Abstract
AbstractThe factors that govern the geographical distribution of nitrogen fixation are fundamental to providing accurate nitrogen budgets in aquatic environments. Model-based insights have demonstrated that regional hydrodynamics strongly impact nitrogen fixation. However, the mechanisms establishing this physical-biological coupling have yet to be constrained in field surveys. Here, we examine the distribution of nitrogen fixation in Lake Tanganyika – a model system with well-defined hydrodynamic regimes. We report that nitrogen fixation is five times higher under stratified than under upwelling conditions. Under stratified conditions, the limited resupply of inorganic nitrogen to surface waters, combined with greater light penetration, promotes the activity of bloom-forming photoautotrophic diazotrophs. In contrast, upwelling conditions support predominantly heterotrophic diazotrophs, which are uniquely suited to chemotactic foraging in a more dynamic nutrient landscape. We suggest that these hydrodynamic regimes (stratification versus mixing) play an important role in governing both the rates and the mode of nitrogen fixation.
Funder
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary