Immunotranscriptomic profiling the acute and clearance phases of a human challenge dengue virus serotype 2 infection model

Author:

Hanley John P.ORCID,Tu Huy A.,Dragon Julie A.ORCID,Dickson Dorothy M.ORCID,Rio-Guerra Roxana del,Tighe Scott W.ORCID,Eckstrom Korin M.ORCID,Selig Nicholas,Scarpino Samuel V.,Whitehead Stephen S.ORCID,Durbin Anna P.ORCID,Pierce Kristen K.,Kirkpatrick Beth D.,Rizzo Donna M.,Frietze SethORCID,Diehl Sean A.ORCID

Abstract

AbstractAbout 20–25% of dengue virus (DENV) infections become symptomatic ranging from self-limiting fever to shock. Immune gene expression changes during progression to severe dengue have been documented in hospitalized patients; however, baseline or kinetic information is difficult to standardize in natural infection. Here we profile the host immunotranscriptome response in humans before, during, and after infection with a partially attenuated rDEN2Δ30 challenge virus (ClinicalTrials.gov NCT02021968). Inflammatory genes including type I interferon and viral restriction pathways are induced during DENV2 viremia and return to baseline after viral clearance, while others including myeloid, migratory, humoral, and growth factor immune regulation factors pathways are found at non-baseline levels post-viremia. Furthermore, pre-infection baseline gene expression is useful to predict rDEN2Δ30-induced immune responses and the development of rash. Our results suggest a distinct immunological profile for mild rDEN2Δ30 infection and offer new potential biomarkers for characterizing primary DENV infection.

Funder

U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences

U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases

Division of Intramural Research, National Institute of Allergy and Infectious Diseases

U.S. Department of Health & Human Services | NIH | NIH Office of the Director

UVM | College of Engineering and Mathematical Sciences, University of Vermont

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3