Thermodynamic driving forces in contact electrification between polymeric materials

Author:

Zhang HangORCID,Sundaresan Sankaran,Webb Michael A.ORCID

Abstract

AbstractContact electrification, or contact charging, refers to the process of static charge accumulation after rubbing, or even simple touching, of two materials. Despite its relevance in static electricity, various natural phenomena, and numerous technologies, contact charging remains poorly understood. For insulating materials, even the species of charge carrier may be unknown, and the direction of charge-transfer lacks firm molecular-level explanation. Here, we use all-atom molecular dynamics simulations to investigate whether thermodynamics can explain contact charging between insulating polymers. Based on prior work suggesting that water-ions, such as hydronium and hydroxide ions, are potential charge carriers, we predict preferred directions of charge-transfer between polymer surfaces according to the free energy of water-ions within water droplets on such surfaces. Broad agreement between our predictions and experimental triboelectric series indicate that thermodynamically driven ion-transfer likely influences contact charging of polymers. Furthermore, simulation analyses reveal how specific interactions of water and water-ions proximate to the polymer-water interface explain observed trends. This study establishes relevance of thermodynamic driving forces in contact charging of insulators with new evidence informed by molecular-level interactions. These insights have direct implications for future mechanistic studies and applications of contact charging involving polymeric materials.

Funder

U.S. Department of Energy

Princeton Innovation Grant, Project X Fund

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3