Breaking the photoswitch speed limit

Author:

Thaggard Grace C.,Park Kyoung Chul,Lim JaewoongORCID,Maldeni Kankanamalage Buddhima K. P.,Haimerl Johanna,Wilson Gina R.,McBride Margaret K.,Forrester Kelly L.,Adelson Esther R.,Arnold Virginia S.,Wetthasinghe Shehani T.,Rassolov Vitaly A.ORCID,Smith Mark D.ORCID,Sosnin Daniil,Aprahamian IvanORCID,Karmakar Manisha,Bag Sayan Kumar,Thakur Arunabha,Zhang Minjie,Tang Ben ZhongORCID,Castaño Jorge A.,Chaur Manuel N.,Lerch Michael M.ORCID,Fischer Roland A.ORCID,Aizenberg JoannaORCID,Herges RainerORCID,Lehn Jean-Marie,Shustova Natalia B.ORCID

Abstract

AbstractThe forthcoming generation of materials, including artificial muscles, recyclable and healable systems, photochromic heterogeneous catalysts, or tailorable supercapacitors, relies on the fundamental concept of rapid switching between two or more discrete forms in the solid state. Herein, we report a breakthrough in the “speed limit” of photochromic molecules on the example of sterically-demanding spiropyran derivatives through their integration within solvent-free confined space, allowing for engineering of the photoresponsive moiety environment and tailoring their photoisomerization rates. The presented conceptual approach realized through construction of the spiropyran environment results in ~1000 times switching enhancement even in the solid state compared to its behavior in solution, setting a record in the field of photochromic compounds. Moreover, integration of two distinct photochromic moieties in the same framework provided access to a dynamic range of rates as well as complementary switching in the material’s optical profile, uncovering a previously inaccessible pathway for interstate rapid photoisomerization.

Funder

National Science Foundation

Camille and Henry Dreyfus Foundation

SC EPSCoR GEAR, USC ASPIRE Award

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3