Abstract
Abstractl-2-Hydroxyglutarate (l-2-HG) plays important roles in diverse physiological processes, such as carbon starvation response, tumorigenesis, and hypoxic adaptation. Despite its importance and intensively studied metabolism, regulation of l-2-HG metabolism remains poorly understood and none of regulator specifically responded to l-2-HG has been identified. Based on bacterial genomic neighborhood analysis of the gene encoding l-2-HG oxidase (LhgO), LhgR, which represses the transcription of lhgO in Pseudomonas putida W619, is identified in this study. LhgR is demonstrated to recognize l-2-HG as its specific effector molecule, and this allosteric transcription factor is then used as a biorecognition element to construct an l-2-HG-sensing FRET sensor. The l-2-HG sensor is able to conveniently monitor the concentrations of l-2-HG in various biological samples. In addition to bacterial l-2-HG generation during carbon starvation, biological function of the l-2-HG dehydrogenase and hypoxia induced l-2-HG accumulation are also revealed by using the l-2-HG sensor in human cells.
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献