Nanosecond optical switching and control system for data center networks

Author:

Xue XuweiORCID,Calabretta Nicola

Abstract

AbstractElectrical switching based data center networks have an intrinsic bandwidth bottleneck and, require inefficient and power-consuming multi-tier switching layers to cope with the rapid growing traffic in data centers. With the benefits of ultra-large bandwidth, high-efficient cost and power consumption, switching traffic in the optical domain has been investigated to replace the electrical switches inside data center networks. However, the deployment of nanosecond optical switches remains a challenge due to the lack of corresponding nanosecond switch control, the lack of optical buffers for packet contention, and the requirement of nanosecond clock and data recovery. In this work, a nanosecond optical switching and control system has been experimentally demonstrated to enable an optically switched data center network with 43.4 nanosecond switching and control capability and with packet contention resolution as well as 3.1 nanosecond clock and data recovery.

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Deep learning-based port-classification approach incorporating LSTM network for high-throughput data center interconnect;Multimedia Tools and Applications;2024-08-28

2. Rapid-calibration optical tunable delay line on 3-µm-thick SOI photonic platforms;Optics Express;2024-08-19

3. Realizing RotorNet: Toward Practical Microsecond Scale Optical Networking;Proceedings of the ACM SIGCOMM 2024 Conference;2024-08-04

4. LNOI Wireless Switches Based on Optical Phased Arrays for On-Chip Communication;IEEE Journal on Selected Areas in Communications;2024-08

5. Photonic WDM Switches for Multi-Band Optical Networks;2024 24th International Conference on Transparent Optical Networks (ICTON);2024-07-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3