Abstract
AbstractOn-going research is exploring novel energy concepts ranging from classical to quantum thermodynamics. Ferromagnets carry substantial built-in energy due to ordered electron spins. Here, we propose to generate electrical power at room temperature by utilizing this magnetic energy to harvest thermal fluctuations on paramagnetic centers using spintronics. Our spin engine rectifies current fluctuations across the paramagnetic centers’ spin states by utilizing so-called ‘spinterfaces’ with high spin polarization. Analytical and ab-initio theories suggest that experimental data at room temperature from a single MgO magnetic tunnel junction (MTJ) be linked to this spin engine. Device downscaling, other spintronic solutions to select a transport spin channel, and dual oxide/organic materials tracks to introduce paramagnetic centers into the tunnel barrier, widen opportunities for routine device reproduction. At present MgO MTJ densities in next-generation memories, this spin engine could lead to ‘always-on’ areal power densities that are highly competitive relative to other energy harvesting strategies.
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy
Reference70 articles.
1. Hai, P. N., Ohya, S., Tanaka, M., Barnes, S. E. & Maekawa, S. Electromotive force and huge magnetoresistance in magnetic tunnel junctions. Nature 458, 489–492 (2009).
2. Miao, G.-X., Chang, J., Assaf, B. A., Heiman, D. & Moodera, J. S. Spin regulation in composite spin-filter barrier devices. Nat. Commun. 5, 3682–3687 (2014).
3. Thierschmann, H. et al. Three-terminal energy harvester with coupled quantum dots. Nat. Nanotechnol. 10, 854–858 (2015).
4. Jaliel, G. et al. Experimental realization of a quantum dot energy harvester. Phys. Rev. Lett. 123, 117701 (2019).
5. Koski, J. V., Kutvonen, A., Khaymovich, I. M., Ala-Nissila, T. & Pekola, J. P. On-chip Maxwell’s demon as an information-powered refrigerator. Phys. Rev. Lett. 115, 260602 (2015).
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献