Abstract
AbstractThe decoherence of point defect qubits is often governed by the electron spin-nuclear spin hyperfine interaction that can be parameterized by using ab inito calculations in principle. So far most of the theoretical works have focused on the hyperfine interaction of the closest nuclear spins, while the accuracy of the predictions for distinct nuclear spins is barely discussed. Here we demonstrate for the case of the NV center in diamond that the absolute relative error of the computed hyperfine parameters can exceed 100% using an industry standards first-principles code. To overcome this issue, we implement an alternative method and report on significantly improved hyperfine values with $${{{{{{{\mathcal{O}}}}}}}}$$
O
(1%) relative mean error at all distances. The provided accurate hyperfine data for the NV center enables high-precision simulation of NV quantum nodes for quantum information processing and positioning of nuclear spins by comparing experimental and theoretical hyperfine data.
Funder
Magyar Tudományos Akadémia
Nemzeti Kutatási, Fejlesztési és Innovációs Hivatal
Knut och Alice Wallenbergs Stiftelse
Publisher
Springer Science and Business Media LLC
Reference37 articles.
1. Jelezko, F. et al. Spectroscopy of single n-v centers in diamond. Single Molecules 2, 255–260 (2001).
2. Weber, J. R. et al. Quantum computing with defects. Proc. Natl Acad. Sci. USA 107, 8513–8518 (2010).
3. Wehner, S., Elkouss, D. & Hanson, R. Quantum internet: a vision for the road ahead. Science 362, eaam9288 (2018).
4. Bradley, C. E. et al. A ten-qubit solid-state spin register with quantum memory up to one minute. Phys. Rev. X 9, 031045 (2019).
5. Abobeih, M. H. et al. Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606, 884–889 (2022).