Abstract
AbstractIntense terahertz (THz) electromagnetic fields have been utilized to reveal a variety of extremely nonlinear optical effects in many materials through nonperturbative driving of elementary and collective excitations. However, such nonlinear photoresponses have not yet been obeserved in light-emitting diodes (LEDs), let alone employing them as fast, cost-effective, compact, and room-temperature-operating THz detectors and cameras. Here, we report ubiquitously available LEDs exhibiting photovoltaic signals of ~0.8 V and ~2 ns response time with signal-to-noise ratios of ~1300 when being illuminated by THz field strengths ~240 kV/cm. We also demonstrated THz-LED detectors and camera prototypes. These unorthodox THz detectors exhibited high responsivities (>1 kV/W) with response time four orders of magnitude shorter than those of pyroelectric detectors. The mechanism was attributed to THz-field-induced impact ionization and Schottky contact. These findings not only help deepen our understanding of strong THz field-matter interactions but also contribute to the applications of strong-field THz diagnosis.
Funder
National Natural Science Foundation of China
the Strategic Priority Research Program of the Chinese Academy of Sciences
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy
Reference49 articles.
1. Kampfrath, T., Tanaka, K. & Nelson, K. A. Resonant and nonresonant control over matter and light by intense terahertz transients. Nat. Photon. 7, 680–690 (2013).
2. Sie, E. J. et al. An ultrafast symmetry switch in a Weyl semimetal. Nature 565, 61–66 (2019).
3. Luo, L. et al. Ultrafast manipulation of topologically enhanced surface transport driven by mid-infrared and terahertz pulses in Bi2Se3. Nat. Commun. 10, 607 (2019).
4. Yang, X. et al. Lightwave-driven gapless superconductivity and forbidden quantum beats by terahertz symmetry breaking. Nat. Photon. 13, 707–713 (2019).
5. Johnson, C. L., Knighton, B. E. & Johnson, J. A. Distinguishing nonlinear terahertz excitation pathways with two-dimensional spectroscopy. Phys. Rev. Lett. 122, 073901 (2019).
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献