Abstract
Abstract
Photoexcitation is a very powerful way to instantaneously drive a material into a novel quantum state without any fabrication, and variable ultrafast techniques have been developed to observe how electron, lattice, and spin degrees of freedom change. One of the most spectacular phenomena is photoinduced superconductivity, and it has been suggested in cuprates that the transition temperature Tc can be enhanced from the original Tc with significant lattice modulations. Here, we show a possibility for another photoinduced high-Tc superconducting state in the iron-based superconductor FeSe. The transient electronic state over the entire Brillouin zone is directly observed by time- and angle-resolved photoemission spectroscopy using extreme ultraviolet pulses obtained from high harmonic generation. Our results of dynamical behaviors from 50 fs to 800 ps consistently support the favourable superconducting state after photoexcitation well above Tc. This finding demonstrates that multiband iron-based superconductors emerge as an alternative candidate for photoinduced superconductors.
Funder
MEXT | Japan Society for the Promotion of Science
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献