Abstract
AbstractMost existing quantum algorithms are discovered accidentally or adapted from classical algorithms, and there is the need for a systematic theory to understand and design quantum circuits. Here we develop a unitary dependence theory to characterize the behaviors of quantum circuits and states in terms of how quantum gates manipulate qubits and determine their measurement probabilities. Compared to the conventional entanglement description of quantum circuits and states, the unitary dependence picture offers more practical information on the measurement and manipulation of qubits, easier generalization to many-qubit systems, and better robustness upon partitioning of the system. The unitary dependence theory can be applied to systematically understand existing quantum circuits and design new quantum algorithms.
Funder
U.S. Department of Energy
National Science Foundation
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献