Abstract
AbstractPlasmonic cavities can provide deep subwavelength light confinement, opening up new avenues for enhancing the spontaneous emission process towards both classical and quantum optical applications. Conventionally, light cannot be directly emitted from the plasmonic metal itself. Here, we explore the large field confinement and slow-light effect near the epsilon-near-zero (ENZ) frequency of the light-emitting material itself, to greatly enhance the “forbidden” two-plasmon spontaneous emission (2PSE) process. Using degenerately-doped InSb as the plasmonic material and emitter simultaneously, we theoretically show that the 2PSE lifetime can be reduced from tens of milliseconds to several nanoseconds, comparable to the one-photon emission rate. Furthermore, we show that the optical nonlocality may largely govern the optical response of the ultrathin ENZ film. Efficient 2PSE from a doped semiconductor film may provide a pathway towards on-chip entangled light sources, with an emission wavelength and bandwidth widely tunable in the mid-infrared.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献