Non-orthogonal cavity modes near exceptional points in the far field

Author:

Yang Jingnan,Shi Shushu,Yan Sai,Zhu Rui,Zhao Xiaoming,Qin Yi,Fu Bowen,Chen Xiqing,Li Hancong,Zuo ZhanchunORCID,Jin KuijuanORCID,Gong QihuangORCID,Xu XiulaiORCID

Abstract

AbstractNon-orthogonal eigenstates are a fundamental feature of non-Hermitian systems and are accompanied by the emergence of nontrivial features. However, the platforms to explore non-Hermitian mode couplings mainly measure near-field effects, and the far-field behaviours remain mostly unexplored. Here, we study how a microcavity with non-Hermitian mode coupling exhibits eigenstate non-orthogonality by investigating the spatial field and the far-field polarization of cavity modes. The non-Hermiticity arises from asymmetric backscattering, which is controlled by integrating two scatterers of different size and location into a microdisk. We observe that the spatial field overlap of two modes increases abruptly to its maximum value, whilst different far-field elliptical polarizations of two modes coalesce when approaching an exceptional point. We demonstrate such features experimentally by measuring the far-field polarization from the fabricated microdisks. Our work reveals the non-orthogonality in the far-field degree of freedom, and the integrability of the microdisks paves a way to integrate more non-Hermitian optical properties into nanophotonic systems.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3